Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs.
نویسندگان
چکیده
Understanding how striatal neurons integrate glutamatergic and GABAergic inputs is essential for understanding the control of movement and the formation of striatal-based memories. Here we show that GABAergic synapses on striatal medium spiny neurons (MSNs) are more sensitive than glutamatergic synapses on the same cells to endocannabinoid (eCB) signaling, and that protocols that induce short-lasting cannabinoid 1 receptor (CB(1)R)-dependent depression at glutamatergic synapses are sufficient to induce long-term depression (LTD) at GABAergic synapses. We also show that the frequency and duration of glutamatergic input are strong determinants of the net effect of eCB signaling, and key factors in determining if LTD has a net disinhibitory or inhibitory action in striatum. Plastic changes in net output from striatal MSNs are thus a complex function of disinhibitory and inhibitory LTD combined with other forms of synaptic plasticity such as long-term potentiation at excitatory synapses.
منابع مشابه
Bidirectional activity-dependent plasticity at corticostriatal synapses.
Corticostriatal projections originate from the entire cerebral cortex and provide the major source of glutamatergic inputs to the basal ganglia. Despite the importance of corticostriatal connections in sensorimotor learning and cognitive functions, plasticity forms at these synapses remain strongly debated. Using a corticostriatal slice preserving the connections between the somatosensory corte...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملCortico-Striatal Spike-Timing Dependent Plasticity After Activation of Subcortical Pathways
Cortico-striatal spike-timing dependent plasticity (STDP) is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP) were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct compo...
متن کاملPersistent synaptic activity produces long-lasting enhancement of endocannabinoid modulation and alters long-term synaptic plasticity.
Learning and memory are thought to involve activity-dependent changes in synaptic efficacy such as long-term potentiation (LTP) and long-term depression (LTD). Recent studies have indicated that endocannabinoid-dependent modulation of inhibitory transmission facilitates induction of hippocampal LTP and that endocannabinoids play a key role in certain forms of LTD. Here, we show that repetitive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2009